13.4 Position, Velocity, Acceleration
If **t** = time and position is given by

$$r(t) = \langle x(t), y(t), z(t) \rangle$$

then
 $r'(t) = \lim_{h \to 0} \frac{r(t+h) - r(t)}{h} = velocity$
 $|r'(t)| = \frac{change in dist}{change in time} = speed = \frac{ds}{dt}$
 $r''(t) = \lim_{h \to 0} \frac{r'(t+h) - r'(t)}{h}$
 $= \frac{change in velocity}{change in time} = a(t)$
 $r''(t) = \lim_{h \to 0} \frac{r'(t+h) - r'(t)}{h}$
 $= \frac{change in velocity}{change in time} = a(t)$
 $r''(t) = \lim_{h \to 0} \frac{r'(t+h) - r'(t)}{h}$
 $= \frac{change in velocity}{change in time} = a(t)$
 $r''(t) = \lim_{h \to 0} \frac{r'(t+h) - r'(t)}{h}$
 $= \frac{change in velocity}{change in time} = a(t)$
 $r''(t) = \sum_{h \to 0} \frac{r'(t+h) - r'(t)}{h}$
 $= \frac{change in velocity}{change in time} = a(t)$
 $r''(t) = \sum_{h \to 0} \frac{r'(t+h) - r'(t)}{h}$
 $r''(t) = \sum_{h \to 0$

HUGE application: ANY motion problem

Newton's 2nd Law of Motion states Force = mass \cdot acceleration $F = m \cdot a$, so $a = \frac{1}{m} \cdot F$

If $F = \langle 0, 0, 0 \rangle$, then all the forces 'balance out' and the object has no acceleration. (Velocity will remain constant) $\frac{1}{\sqrt{2}}$

If $F \neq \langle 0,0,0 \rangle$, then acceleration will occur, and we integrate (or solve a differential equation) to find velocity and position.

That is how we can model ALL motion problems!

HW Example: An object of mass 10 kg is being acted on by the force $F = \langle 130t, 10e^{t}, 10e^{-t} \rangle$. You are given $v(0) = \langle 0, 0, 1 \rangle$ and $r(0) = \langle 0, 1, 1 \rangle$. Find the position function. $a(t) = \frac{1}{10} < 130t, 10e^{t}, 10e^{-t}$ $\vec{a}(t) = \langle (3t, e^{t}, e^{-t}) \rangle$ $\vec{v}(t) = \langle \frac{13}{2}t^2 + (1, e^t + (2, -e^{-t} + (3))) \rangle$ $V(0) = 0 + C_1 = 0$ $C_1 = 0$ $V(0) = 1 + C_2 = 0 \quad C_2 = -1$ $V(0) = -1 + (3 = 1 + C_3 = 2)$ $V(t) = \langle \frac{13}{2}t^2, e^t - 1, -e^{-t} \rangle$ $\vec{r}(t) = < \frac{13}{6}t^3, e^t - t, e^{-t} + 2t >$

this kind of Q WON, + be on test For a much more interesting and applied example try this one...

A ball with mass m = 0.8 kg is thrown northward into the air with initial speed of 30 m/sec at an angle of 30 degrees with the ground. A west wind applies a steady force of 4 N on the ball (west to east).

If you are standing on level ground, where does the ball land?

I won't do this in class, but here is a video of me working through it as well as visuals: <u>Applied Motion Example</u> **Visuals:** <u>https://www.math3d.org/QbuedSnK</u>

Tangential and Normal Components of

$$a_T = rac{oldsymbol{r'} \cdot oldsymbol{r''}}{|oldsymbol{r'}|} ext{ and } a_N = rac{|oldsymbol{r'} imes oldsymbol{r'}|}{|oldsymbol{r'}|}$$

Notes:

- *a_T* can be positive or negative (or zero)
 positive speedometer speed increasing
 negative speedometer speed decreasing
- *a_N* is always positive (or zero)
 (accel. points "inward" relative to the curve, but not always "directly" inward)

For interpreting use, $a_T = \nu' = \frac{d}{dt} |r'(t)| = \text{"deriv. of speed"}$ $a_N = k\nu^2 = \text{curvature} \cdot (\text{speed})^2$

(derivative of this is on the next page)

Deriving interpretations (you can skip this):

Note visually that you can see:

 $\boldsymbol{a} = a_T \boldsymbol{T} + a_N \boldsymbol{N}$

We are trying to find the numbers in front of **T** and **N**.

Let
$$v(t) = |\vec{v}(t)| = \text{speed.}$$

1. $\vec{T}(t) = \frac{\vec{r}'(t)}{|\vec{r}'(t)|} = \frac{\vec{v}(t)}{v(t)}$ implies $\vec{v} = v\vec{T}$.
2. $\kappa(t) = \frac{|\vec{T}'(t)|}{|\vec{r}'(t)|} = \frac{|\vec{T}'|}{v(t)}$ implies $|\vec{T}'| = \kappa v$.
3. $\vec{N}(t) = \frac{\vec{T}'(t)}{|\vec{T}'(t)|} = \frac{\vec{T}'}{\kappa v}$ implies $\vec{T}' = \kappa v \vec{N}$.
Differentiating the first fact above gives
 $\vec{a} = \vec{v}' = v'\vec{T} + v\vec{T}'$, so
 $\vec{a} = \vec{v}' = v'\vec{T} + kv^2\vec{N}$.

Conclusion:

$$a_T = \nu' = \frac{d}{dt} |r'(t)| =$$
 "deriv. of speed"
 $a_N = k\nu^2 = \text{curvature} \cdot (\text{speed})^2$

Example:

 $\vec{r}(t) = \langle \cos(t), \sin(t), t \rangle$ Find the tangential and normal components of acceleration.

$$\frac{r^2 \cdot r''}{|r'|} \frac{|r' \times r''|}{|r'|}$$

$$\begin{aligned} r'(t) &= \langle -\sin(t), \cos(t), 1 \rangle \\ r'(t) &= \sqrt{\sin^2 t + \cos^2 t + 1} = \sqrt{2} \\ r''(t) &= \langle -\cos(t), -\sin(t), o \rangle \\ r''(t) &= \langle -\cos(t), -\sin(t), o \rangle \\ r''(t) &= \cos(t) \sin(t) - \cos(t) \sin(t) + 0 = 0 \end{aligned}$$

$$\begin{aligned} r' \times r'' &= \sqrt{2} \\ r' \times r'' \\ r' \times r'' &= \sqrt{2} \\ r' \times r'' \\$$

